If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+158t-40=0
a = -16; b = 158; c = -40;
Δ = b2-4ac
Δ = 1582-4·(-16)·(-40)
Δ = 22404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{22404}=\sqrt{4*5601}=\sqrt{4}*\sqrt{5601}=2\sqrt{5601}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(158)-2\sqrt{5601}}{2*-16}=\frac{-158-2\sqrt{5601}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(158)+2\sqrt{5601}}{2*-16}=\frac{-158+2\sqrt{5601}}{-32} $
| 14m=12 | | x^2+16x-50+89=0 | | -16t^2+185t+17=0 | | 6x-10=2x+5+x | | 3(2x-1)=6x-4+1 | | -16t^2+185t-118=0 | | 12=a+7.9 | | 12=a+7.9 | | 4x-33=x+36 | | 11x-60=6x+20 | | -16t^2+107t+10=0 | | -16t^2+107t-157=0 | | -16t^2-107t-97=0 | | -2+2b=5b=5.5 | | -16t^2+134t-245=0 | | 24+2p=6(p+4)-4p | | -4m=6=-9m=31 | | 5x+4=–3(x–8) | | 2(3b-4)=4b+4 | | 0.5×=14;c | | 0.5×=14;x | | W+4+3w=3+10 | | 8x^2+4x=-7 | | 12p-7=6p=5 | | 2(3b-4)=6b+4 | | 2(3b-4)=6b+1 | | 40=3d=2d | | 9x−5=3(x−2)+13 | | 9x−5=3∗(x−2)+13 | | .12x^2-2.4x+10=0 | | 7w=28w | | (k+1)(k−5)=0 |